
Spring 2020 OIT 604: Data, Learning, and Decision-Making

Course Description

The aim of this course is to cover modern tools for data-driven decision making. Most decision
making tasks involve uncertainty that is directly impacted by the amount and complexity
of data at hand. Classical decision models rely on strong distributional assumptions about
the uncertain events. But in recent years, and due to growing availability of rich data, there
has been a rapid adoption of models from machine learning and statistics that provide more
accurate and personalized picture of the uncertainty which in turn leads to better decisions.
The interplay between the multiple objectives of modeling the data, personalization, and
decision optimization has created a number mathematical models that the course aims to
cover.

Topics1

1. The “Data → prediction → decision” paradigm.
Methods: Parametric estimation and regularization
Reference: Bayati et al. [7].

2. Indirect and direct methods for learning and decision making in presence of covariates
Methods: Non-parametric estimation, random forest
References: Ban and Rudin [3], Bertsimas and Kallus [8].

3. Indirect and direct methods for learning and decision making for multi-outcome settings
Methods: Matrix estimation, low-rank methods
References: Kao and Van Roy [14].

4. Multi-armed bandit, a toy model for dynamic learning and decision making Methods:
ε-Greedy, Upper Confidence Bound (UCB), Thompson Sampling
References: Scott [17], Chapelle and Li [10].

5. Multi-armed bandits with covariates I
Methods: Linear bandits, UCB and Thompson sampling for linear bandits
References: Li et al. [15], Abbasi-Yadkori et al. [1], Agrawal and Goyal [2], Russo and
Van Roy [16], Hamidi and Bayati [13].

6. Multi-armed bandits with covariates II
Methods: Two estimator bandits, lasso bandit for high-dimensional problems
References: Goldenshluger and Zeevi [11], Bastani and Bayati [4].

7. Free exploration in contextual bandits
Methods: Matrix tail bounds, covariate diversity, Greedy-First algorithm
References: Bastani et al. [5], Bietti et al. [9].

8. Bayesian learning and decision-making
Methods: Factor graphs and message-passing algorithms
References: Graepel and Herbrich [12], Bayati and Montanari [6].

1There may be some modifications to this list as the quarter unfolds
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Logistics

Time and Location. Thursdays 3 PM - 5:50 PM over zoom (links will be provided on
Canvas).

Prerequisites. Knowledge of probability and linear algebra is required. Some assignments
may need programming in one language of your preference (e.g. Matlab, Python, R, . . . )

Course Calendar. Contains the schedule and due dates, this link.

Grading Criteria and Policies

1. Class participation (20%)

• Scribing lecture notes, we provide you with a LaTeX template (make your selec-
tions on (course calendar, contains the schedule and due dates))

2. Two Problem set (20%)

3. Projects (50%), you can work with teams of size up to three (we strongly encourage
at least two)

• Proposal, one page (5%)

• Progress report, two pages (10%)

• Final presentation (15-20 minutes, depending on the number of projects), during
last lecture (15%)

• Final report (at most 5 pages) (10%)
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